Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
Lancet Rheumatol ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38734019

ABSTRACT

BACKGROUND: The humoral and T-cell responses to booster COVID-19 vaccine types in multidisease immunocompromised individuals who do not generate adequate antibody responses to two COVID-19 vaccine doses, is not fully understood. The OCTAVE DUO trial aimed to determine the value of third vaccinations in a wide range of patients with primary and secondary immunodeficiencies. METHODS: OCTAVE-DUO was a prospective, open-label, multicentre, randomised, controlled, phase 3 trial investigating humoral and T-cell responses in patients who are immunocompromised following a third vaccine dose with BNT162b2 or mRNA-1273, and of NVX-CoV2373 for those with lymphoid malignancies. We recruited patients who were immunocompromised from 11 UK hospitals, aged at least 18 years, with previous sub-optimal responses to two doses of SARS-CoV-2 vaccine. Participants were randomly assigned 1:1 (1:1:1 for those with lymphoid malignancies), stratified by disease, previous vaccination type, and anti-spike antibody response following two doses. Individuals with lived experience of immune susceptibility were involved in the study design and implementation. The primary outcome was vaccine-specific immunity defined by anti-SARS-CoV-2 spike antibodies (Roche Diagnostics UK and Ireland, Burgess Hill, UK) and T-cell responses (Oxford Immunotec, Abingdon, UK) before and 21 days after the third vaccine dose analysed by a modified intention-to-treat analysis. The trial is registered with the ISRCTN registry, ISRCTN 15354495, and the EU Clinical Trials Register, EudraCT 2021-003632-87, and is complete. FINDINGS: Between Aug 4, 2021 and Mar 31, 2022, 804 participants across nine disease cohorts were randomly assigned to receive BNT162b2 (n=377), mRNA-1273 (n=374), or NVX-CoV2373 (n=53). 356 (45%) of 789 participants were women, 433 (55%) were men, and 659 (85%) of 775 were White. Anti-SARS-CoV-2 spike antibodies measured 21 days after the third vaccine dose were significantly higher than baseline pre-third dose titres in the modified intention-to-treat analysis (median 1384 arbitrary units [AU]/mL [IQR 4·3-7990·0] compared with median 11·5 AU/mL [0·4-63·1]; p<0·001). Of participants who were baseline low responders, 380 (90%) of 423 increased their antibody concentrations to more than 400 AU/mL. Conversely, 166 (54%) of 308 baseline non-responders had no response after the third dose. Detectable T-cell responses following the third vaccine dose were seen in 494 (80%) of 616 participants. There were 24 serious adverse events (BNT612b2 eight [33%] of 24, mRNA-1273 12 [50%], NVX-CoV2373 four [17%]), two (8%) of which were categorised as vaccine-related. There were seven deaths (1%) during the trial, none of which were vaccine-related. INTERPRETATION: A third vaccine dose improved the serological and T-cell response in the majority of patients who are immunocompromised. Individuals with chronic renal disease, lymphoid malignancy, on B-cell targeted therapies, or with no serological response after two vaccine doses are at higher risk of poor response to a third vaccine dose. FUNDING: Medical Research Council, Blood Cancer UK.

2.
BMJ Open ; 13(9): e078539, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37770264

ABSTRACT

INTRODUCTION: Psoriatic arthritis (PsA) affects around 150 000 people in the UK of whom around 50% require treatment with biologics. The most used biologics for PsA target tumour necrosis factor (TNF) or interleukin-17A (IL-17A). About 50% of patients respond to each, but it is not currently possible to predict response for individual patients, necessitating sequential treatment steps. A recent proof of concept study in PsA suggested that using peripheral immunophenotype to choose therapy could improve time to treatment response.This study will test the hypothesis, within an open-label parallel-group biomarker-stratified multicentre randomised controlled trial, which the baseline proportion of CD4+T cells with an activated type 17 immunophenotype (Th17 levels) predicts response to IL-17A or TNF inhibitors in PsA. Additional analyses will identify if the model can be refined by combining additional clinical and immunophenotypic factors. Statistical modelling will be used to predict the likely effectiveness of these approaches compared with standard care. METHODS AND ANALYSIS: Patients with PsA eligible to start their first biologic as part of standard care are recruited and baseline blood tests are taken for immunophenotyping. Participants are stratified equally by Th17 levels and randomised 1:1 to receive either TNF (adalimumab) or IL-17A (secukinumab) inhibitors. The primary analysis will establish the interaction between baseline immunophenotype and treatment on the primary outcome (achievement of minimal disease activity criteria at week 24). In secondary analysis, modelling will identify if this prediction model can be optimised further by incorporating clinical phenotypes and additional immunophenotyping techniques. ETHICS AND DISSEMINATION: Ethical approval for the study was granted by the North West Preston Research Ethics Committee (ref 21/NW/0016). Dissemination will be via conference presentations and peer-reviewed publications, aiming to impact on treatment guidelines. TRIAL REGISTRATION NUMBER: ISRCTN17228602.


Subject(s)
Antirheumatic Agents , Arthritis, Psoriatic , Biological Products , Humans , Arthritis, Psoriatic/drug therapy , Arthritis, Psoriatic/pathology , Antirheumatic Agents/therapeutic use , Interleukin-17/therapeutic use , Precision Medicine , Biological Products/therapeutic use , Treatment Outcome , Randomized Controlled Trials as Topic , Multicenter Studies as Topic
3.
Ther Adv Musculoskelet Dis ; 15: 1759720X231192315, 2023.
Article in English | MEDLINE | ID: mdl-37694182

ABSTRACT

Achieving a good outcome for a person with Psoriatic Arthritis (PsA) is made difficult by late diagnosis, heterogenous clinical disease expression and in many cases, failure to adequately suppress inflammatory disease features. Single-centre studies have certainly contributed to our understanding of disease pathogenesis, but to adequately address the major areas of unmet need, multi-partner, collaborative research programmes are now required. HIPPOCRATES is a 5-year, Innovative Medicines Initiative (IMI) programme which includes 17 European academic centres experienced in PsA research, 5 pharmaceutical industry partners, 3 small-/medium-sized industry partners and 2 patient-representative organizations. In this review, the ambitious programme of work to be undertaken by HIPPOCRATES is outlined and common approaches and challenges are identified. It is expected that, when completed, the results will ultimately allow for changes in the approaches to diagnosing, managing and treating PsA allowing for better short-term and long-term outcomes.


Improving outcomes in Psoriatic Arthritis Psoriatic Arthritis (PsA) is a form of arthritis which is found in approximately 30% of people who have the skin condition, Psoriasis. Frequently debilitating and progressive, achieving a good outcome for a person with PsA is made difficult by late diagnosis, disease clinical features and in many cases, failure to adequately control features of inflammation. Research studies from individual centres have certainly contributed to our understanding of why people develop PsA but to adequately address the major areas of unmet need, multi-centre, collaborative research programmes are now required. HIPPOCRATES is a 5-year, Innovative Medicines Initiative (IMI) programme which includes 17 European academic centres experienced in PsA research, 5 pharmaceutical industry partners, 3 small-/medium-sized industry partners and 2 patient representative organisations (see appendix). In this review, the ambitious programme of work to be undertaken by HIPPOCRATES is outlined and common approaches and challenges are identified. The participation of patient research partners in all stages of the work of HIPPOCRATES is highlighted. It is expected that, when completed, the results will ultimately allow for changes in the approaches to diagnosing, managing and treating PsA allowing for improvements in short-term and long-term outcomes.

4.
Front Immunol ; 14: 1241474, 2023.
Article in English | MEDLINE | ID: mdl-37638026

ABSTRACT

B cells are key pathogenic drivers of chronic inflammation in rheumatoid arthritis (RA). There is limited understanding of the relationship between synovial B cell subsets and pathogenic antibody secreting cells (ASCs). This knowledge is crucial for the development of more targeted B-cell depleting therapies. While CD11c+ double-negative 2 (DN2) B cells have been suggested as an ASC precursor in lupus, to date there is no proven link between the two subsets in RA. We have used both single-cell gene expression and BCR sequencing to study synovial B cells from patients with established RA, in addition to flow cytometry of circulating B cells. To better understand the differentiation patterns within the diseased tissue, a combination of RNA-based trajectory inference and clonal lineage analysis of BCR relationships were used. Both forms of analysis indicated that DN2 B cells serve as a major precursors to synovial ASCs. This study advances our understanding of B cells in RA and reveals the origin of pathogenic ASCs in the RA synovium. Given the significant role of DN2 B cells as a progenitor to pathogenic B cells in RA, it is important to conduct additional research to investigate the origins of DN2 B cells in RA and explore their potential as therapeutic targets in place of the less specific pan-B cells depletion therapies currently in use.


Subject(s)
Arthritis, Rheumatoid , B-Lymphocyte Subsets , Humans , Plasma Cells , B-Lymphocytes , Antibody-Producing Cells
5.
Arthritis Rheumatol ; 75(12): 2148-2160, 2023 12.
Article in English | MEDLINE | ID: mdl-37410754

ABSTRACT

OBJECTIVE: IĸB protein B cell lymphoma 3-encoded protein (BCL3) is a regulator of the NF-κB family of transcription factors. NF-κB signaling fundamentally influences the fate of bone-forming osteoblasts and bone-resorbing osteoclasts, but the role of BCL3 in bone biology has not been investigated. The objective of this study was to evaluate BCL3 in skeletal development, maintenance, and osteoarthritic pathology. METHODS: To assess the contribution of BCL3 to skeletal homeostasis, neonatal mice (n = 6-14) lacking BCL3 (Bcl3-/- ) and wild-type (WT) controls were characterized for bone phenotype and density. To reveal the contribution to bone phenotype by the osteoblast compartment in Bcl3-/- mice, transcriptomic analysis of early osteogenic differentiation and cellular function (n = 3-7) were assessed. Osteoclast differentiation and function in Bcl3-/- mice (n = 3-5) was assessed. Adult 20-week Bcl3-/- and WT mice bone phenotype, strength, and turnover were assessed. A destabilization of the medial meniscus model of osteoarthritic osteophytogenesis was used to understand adult bone formation in Bcl3-/- mice (n = 11-13). RESULTS: Evaluation of Bcl3-/- mice revealed congenitally increased bone density, long bone dwarfism, increased bone biomechanical strength, and altered bone turnover. Molecular and cellular characterization of mesenchymal precursors showed that Bcl3-/- cells displayed an accelerated osteogenic transcriptional profile that led to enhanced differentiation into osteoblasts with increased functional activity, which could be reversed with a mimetic peptide. In a model of osteoarthritis-induced osteophytogenesis, Bcl3-/- mice exhibited decreased pathological osteophyte formation (P < 0.05). CONCLUSION: Cumulatively, these findings demonstrate that BCL3 controls developmental mineralization to enable appropriate bone formation, whereas in a pathological setting, it contributes to skeletal pathology.


Subject(s)
B-Cell Lymphoma 3 Protein , Bone and Bones , Osteogenesis , Animals , Mice , Bone and Bones/metabolism , Bone Density , Cell Differentiation , NF-kappa B/metabolism , Osteoblasts/metabolism , Osteoclasts/metabolism , B-Cell Lymphoma 3 Protein/genetics
6.
Nat Med ; 29(7): 1760-1774, 2023 07.
Article in English | MEDLINE | ID: mdl-37414897

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immune responses and infection outcomes were evaluated in 2,686 patients with varying immune-suppressive disease states after administration of two Coronavirus Disease 2019 (COVID-19) vaccines. Overall, 255 of 2,204 (12%) patients failed to develop anti-spike antibodies, with an additional 600 of 2,204 (27%) patients generating low levels (<380 AU ml-1). Vaccine failure rates were highest in ANCA-associated vasculitis on rituximab (21/29, 72%), hemodialysis on immunosuppressive therapy (6/30, 20%) and solid organ transplant recipients (20/81, 25% and 141/458, 31%). SARS-CoV-2-specific T cell responses were detected in 513 of 580 (88%) patients, with lower T cell magnitude or proportion in hemodialysis, allogeneic hematopoietic stem cell transplantation and liver transplant recipients (versus healthy controls). Humoral responses against Omicron (BA.1) were reduced, although cross-reactive T cell responses were sustained in all participants for whom these data were available. BNT162b2 was associated with higher antibody but lower cellular responses compared to ChAdOx1 nCoV-19 vaccination. We report 474 SARS-CoV-2 infection episodes, including 48 individuals with hospitalization or death from COVID-19. Decreased magnitude of both the serological and the T cell response was associated with severe COVID-19. Overall, we identified clinical phenotypes that may benefit from targeted COVID-19 therapeutic strategies.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19 Vaccines , BNT162 Vaccine , ChAdOx1 nCoV-19 , Vaccination , Antibodies, Viral
7.
J Allergy Clin Immunol ; 152(3): 783-798, 2023 09.
Article in English | MEDLINE | ID: mdl-37244461

ABSTRACT

BACKGROUND: IL-17A plays a pivotal pathogenic role in several immune-mediated inflammatory diseases. Despite sharing 50% sequence homology with IL-17A, the role of IL-17F remains less clear. Clinical findings suggest that dual inhibition of IL-17A and IL-17F in psoriatic disease is more efficacious than IL-17A inhibition alone, positing a pathogenic role for IL-17F. OBJECTIVE: We characterized the regulation of IL-17A and IL-17F in psoriatic disease. METHODS: Using both in vitro systems and lesional skin tissue from patients, we interrogated the chromosomal, transcriptional, and protein expression landscape of IL-17A+ and IL-17F+ TH17 cells. Alongside established assays such as single-cell RNA sequencing, we developed a novel cytokine-capture technique that was combined with chromatin immunoprecipitation sequencing and RNA sequencing. RESULTS: We confirm a preferential elevation of IL-17F over IL-17A in psoriatic disease and show that expression of each isoform predominantly occurs in distinct cell populations. The expression of both IL-17A and IL-17F exhibited a high degree of plasticity, with the balance between the 2 isoforms influenced by proinflammatory signaling and by anti-inflammatory drugs such as methylprednisolone. This plasticity was reflected in a broad H3K4me3 region at the IL17A-F locus, while opposing effects of STAT5/IL-2 signaling were observed for each of the 2 genes. Functionally, higher IL17F expression was linked to greater cell proliferation. CONCLUSION: There are key differences in the regulation of IL-17A and IL-17F in psoriatic disease, leading to distinct inflammatory cell populations. As such, we propose that both IL-17A and IL-17F neutralization may be required to maximally inhibit IL-17-driven pathology.


Subject(s)
Interleukin-17 , STAT5 Transcription Factor , Humans , Interleukin-17/metabolism , STAT5 Transcription Factor/genetics , STAT5 Transcription Factor/metabolism , Signal Transduction
8.
Glia ; 71(7): 1683-1698, 2023 07.
Article in English | MEDLINE | ID: mdl-36945189

ABSTRACT

There is an urgent need for therapies that target the multicellular pathology of central nervous system (CNS) disease. Modified, nonanticoagulant heparins mimic the heparan sulfate glycan family and are known regulators of multiple cellular processes. In vitro studies have demonstrated that low sulfated modified heparin mimetics (LS-mHeps) drive repair after CNS demyelination. Herein, we test LS-mHep7 (an in vitro lead compound) in experimental autoimmune encephalomyelitis (EAE) and cuprizone-induced demyelination. In EAE, LS-mHep7 treatment resulted in faster recovery and rapidly reduced inflammation which was accompanied by restoration of animal weight. LS-mHep7 treatment had no effect on remyelination or on OLIG2 positive oligodendrocyte numbers within the corpus callosum in the cuprizone model. Further in vitro investigation confirmed that LS-mHep7 likely mediates its pro-repair effect in the EAE model by sequestering inflammatory cytokines, such as CCL5 which are upregulated during immune-mediated inflammatory attacks. These data support the future clinical translation of this next generation modified heparin as a treatment for CNS diseases with active immune system involvement.


Subject(s)
Central Nervous System Diseases , Encephalomyelitis, Autoimmune, Experimental , Animals , Mice , Cuprizone/toxicity , Sulfates/adverse effects , Oligodendroglia/pathology , Encephalomyelitis, Autoimmune, Experimental/chemically induced , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/pathology , Corpus Callosum/pathology , Central Nervous System Diseases/pathology , Heparitin Sulfate/therapeutic use , Mice, Inbred C57BL , Disease Models, Animal , Myelin Sheath/pathology
9.
J Vis Exp ; (191)2023 01 27.
Article in English | MEDLINE | ID: mdl-36779608

ABSTRACT

Osteoclasts (OCs) are bone-resorbing cells that play a pivotal role in skeletal development and adult bone remodeling. Several bone disorders are caused by increased differentiation and activation of OCs, so the inhibition of this pathobiology is a key therapeutic principle.Two key factors drive the differentiation of OCs from myeloid precursors: macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor kappa-B ligand (RANKL). Human circulating CD14+ monocytes have long been known to differentiate into OCs in vitro. However, the exposure time and the concentration of RANKL influence the differentiation efficiency. Indeed, protocols for the generation of human OCs in vitro have been described, but they often result in a poor and lengthy differentiation process. Herein, a robust and standardized protocol for generating functionally active mature human OCs in a timely manner is provided. CD14+ monocytes are enriched from human peripheral blood mononuclear cells (PBMCs) and primed with M-CSF to upregulate RANK. Subsequent exposure to RANKL generates OCs in a dose- and time-dependent manner. OCs are identified and quantified by staining with tartrate acid-resistant phosphatase (TRAP) and light microscopy analysis. Immunofluorescence staining of nuclei and F-actin is used to identify functionally active OCs. In addition, OSCAR+CD14- mature OCs are further enriched via flow cytometry cell sorting, and OC functionality quantified by mineral (or dentine/bone) resorption assays and actin ring formation. Finally, a known OC inhibitor, rotenone, is used on mature OCs, demonstrating that adenosine triphosphate (ATP) production is essential for actin ring integrity and OC function. In conclusion, a robust assay for differentiating high numbers of OCs is established in this work, which in combination with actin ring staining and an ATP assay provides a useful in vitro model to evaluate OC function and to screen for novel therapeutic compounds that can modulate the differentiation process.


Subject(s)
Bone Resorption , Osteoclasts , Humans , Actins , Cell Differentiation/physiology , Cells, Cultured , Leukocytes, Mononuclear , Macrophage Colony-Stimulating Factor/pharmacology , Monocytes , RANK Ligand
10.
RMD Open ; 9(1)2023 01.
Article in English | MEDLINE | ID: mdl-36599629

ABSTRACT

OBJECTIVES: Macrophage subsets, activated by T cells, are increasingly recognised to play a central role in rheumatoid arthritis (RA) pathogenesis. Janus kinase (JAK) inhibitors have proven beneficial clinical effects in RA. In this study, we investigated the effect of JAK inhibitors on the generation of cytokine-activated T (Tck) cells and the production of cytokines and chemokines induced by Tck cell/macrophage interactions. METHODS: CD14+ monocytes and CD4+ T cells were purified from peripheral blood mononuclear cells from buffy coats of healthy donors. As representative JAK inhibitors, tofacitinib or ruxolitinib were added during Tck cell differentiation. Previously validated protocols were used to generate macrophages and Tck cells from monocytes and CD4+ T cells, respectively. Cytokine and chemokine including TNF, IL-6, IL-15, IL-RA, IL-10, MIP1α, MIP1ß and IP10 were measured by ELISA. RESULTS: JAK inhibitors prevented cytokine-induced maturation of Tck cells and decreased the production of proinflammatory cytokines TNF, IL-6, IL-15, IL-1RA and the chemokines IL-10, MIP1α, MIP1ß, IP10 by Tck cell-activated macrophages in vitro (p<0.05). CONCLUSIONS: Our findings show that JAK inhibition disrupts T cell-induced macrophage activation and reduces downstream proinflammatory cytokine and chemokine responses, suggesting that suppressing the T cell-macrophage interaction contributes to the therapeutic effect of JAK inhibitors.


Subject(s)
Arthritis, Rheumatoid , Janus Kinase Inhibitors , Humans , Interleukin-10/pharmacology , Interleukin-10/therapeutic use , Janus Kinase Inhibitors/pharmacology , Janus Kinase Inhibitors/therapeutic use , Synovial Membrane/pathology , Interleukin-15/pharmacology , Interleukin-15/therapeutic use , Interleukin-6 , Leukocytes, Mononuclear/pathology , Macrophage Activation , Chemokine CXCL10/pharmacology , Chemokine CXCL10/therapeutic use , Macrophages , Arthritis, Rheumatoid/drug therapy , Cytokines , T-Lymphocytes
11.
Nat Rev Rheumatol ; 19(3): 153-165, 2023 03.
Article in English | MEDLINE | ID: mdl-36596924

ABSTRACT

Psoriatic arthritis (PsA) is a heterogeneous disease involving multiple potential tissue domains. Most outcome measures used so far in randomized clinical trials do not sufficiently reflect this domain heterogeneity. The concept that pathogenetic mechanisms might vary across tissues within a single disease, underpinning such phenotype diversity, could explain tissue-distinct levels of response to different therapies. In this Review, we discuss the tissue, cellular and molecular mechanisms that drive clinical heterogeneity in PsA phenotypes, and detail existing tissue-based research, including data generated using sophisticated interrogative technologies with single-cell precision. Finally, we discuss how these elements support the need for tissue-based therapy in PsA in the context of existing and new therapeutic modes of action, and the implications for future PsA trial outcomes and design.


Subject(s)
Arthritis, Psoriatic , Humans , Arthritis, Psoriatic/drug therapy , Phenotype , Outcome Assessment, Health Care
12.
Biomedicines ; 10(10)2022 Sep 24.
Article in English | MEDLINE | ID: mdl-36289648

ABSTRACT

The definitive diagnosis and early treatment of many immune-mediated inflammatory diseases (IMIDs) is hindered by variable and overlapping clinical manifestations. Psoriatic arthritis (PsA), which develops in ~30% of people with psoriasis, is a key example. This mixed-pattern IMID is apparent in entheseal and synovial musculoskeletal structures, but a definitive diagnosis often can only be made by clinical experts or when an extensive progressive disease state is apparent. As with other IMIDs, the detection of multimodal molecular biomarkers offers some hope for the early diagnosis of PsA and the initiation of effective management and treatment strategies. However, specific biomarkers are not yet available for PsA. The assessment of new markers by genomic and epigenomic profiling, or the analysis of blood and synovial fluid/tissue samples using proteomics, metabolomics and lipidomics, provides hope that complex molecular biomarker profiles could be developed to diagnose PsA. Importantly, the integration of these markers with high-throughput histology, imaging and standardized clinical assessment data provides an important opportunity to develop molecular profiles that could improve the diagnosis of PsA, predict its occurrence in cohorts of individuals with psoriasis, differentiate PsA from other IMIDs, and improve therapeutic responses. In this review, we consider the technologies that are currently deployed in the EU IMI2 project HIPPOCRATES to define biomarker profiles specific for PsA and discuss the advantages of combining multi-omics data to improve the outcome of PsA patients.

13.
Oncoimmunology ; 11(1): 2104070, 2022.
Article in English | MEDLINE | ID: mdl-35936985

ABSTRACT

Bone disease represents a major cause of morbidity and mortality in Multiple Myeloma (MM); primarily driven by osteoclasts whose differentiation is dependent on expression of RANKL by MM cells. Notably, costimulation by ITAM containing receptors (i.e., FcγR) can also play a crucial role in osteoclast differentiation. Modeling the pathology of the bone marrow microenvironment with an ex vivo culture system of primary human multiple myeloma cells, we herein demonstrate that FcγR-mediated signaling, via staphylococcal protein A (SpA) IgG immune-complexes, can act as a critical negative regulator of MM-driven osteoclast differentiation. Interrogation of the mode-of-action revealed that FcγR-mediated signaling causes epigenetic modulation of chromosomal 3D architecture at the RANK promoter; with altered spatial orientation of a proximal super enhancer. Combined this leads to substantial down-regulation of RANK at a transcript, protein, and functional level. These observations shed light on a novel mechanism regulating RANK expression and provide a rationale for targeting FcγR-signaling for the amelioration of osteolytic bone pathology in disease.


Subject(s)
Multiple Myeloma , Osteogenesis , Cell Differentiation/genetics , Humans , Multiple Myeloma/genetics , Multiple Myeloma/metabolism , Osteoclasts/metabolism , Osteogenesis/genetics , Receptors, IgG/genetics , Receptors, IgG/metabolism , Tumor Microenvironment
14.
J Vis Exp ; (185)2022 07 06.
Article in English | MEDLINE | ID: mdl-35876542

ABSTRACT

Osteoarthritis is the most prevalent musculoskeletal disease in people over 45, leading to an increasing economic and societal cost. Animal models are used to mimic many aspects of the disease. The present protocol describes the destabilization and cartilage scratch model (DCS) of post-traumatic osteoarthritis. Based on the widely used destabilization of the medial meniscus (DMM) model, DCS introduces three scratches on the cartilage surface. The current article highlights the steps to destabilize the knee by transecting the medial meniscotibial ligament followed by three intentional superficial scratches on the articular cartilage. The possible analysis methods by dynamic weight-bearing, microcomputed tomography, and histology are also demonstrated. While the DCS model is not recommended for studies that focus on the effect of osteoarthritis on the cartilage, it enables the study of osteoarthritis development in a shorter time window, with special focus on (1) osteophyte formation, (2) osteoarthritic and injury pain, and (3) the effect of cartilage damage in the whole joint.


Subject(s)
Cartilage, Articular , Osteoarthritis , Animals , Cartilage, Articular/diagnostic imaging , Disease Models, Animal , Humans , Menisci, Tibial/diagnostic imaging , Menisci, Tibial/surgery , Mice , Osteoarthritis/diagnostic imaging , Osteoarthritis/etiology , Osteoarthritis/pathology , X-Ray Microtomography
15.
J Crohns Colitis ; 16(9): 1447-1460, 2022 Sep 08.
Article in English | MEDLINE | ID: mdl-35304895

ABSTRACT

BACKGROUND AND AIMS: Endoscopy and the use of faecal calprotectin [faecal CP] are among the least-favoured methods for assessing disease activity by inflammatory bowel disease [IBD] patients; the handling/processing of faecal samples is also impractical. Therefore, we sought to develop a novel neo-epitope serum calprotectin enzyme-linked immunosorbent assay [ELISA], CPa9-HNE, with the aim of quantifying neutrophil activity and neutrophil extracellular trap [NET]-osis and proposing a non-invasive method for monitoring disease activity in IBD patients. METHODS: In vitro cleavage was performed by mixing calprotectin [S100A9/S100A8] with human neutrophil elastase [HNE], and a novel HNE-derived calprotectin neo-epitope [CPa9-HNE] was identified by mass spectrometry for ELISA development. The CPa9-HNE ELISA was quantified in supernatants from ex vivo activated neutrophils and serum samples from patients with ulcerative colitis [UC, n = 43], Crohn's disease [CD, n = 93], and healthy subjects [HS, n = 23]. For comparison, faecal CP and MRP8/14 biomarkers were also measured. RESULTS: CPa9-HNE was specific for activated neutrophils ex vivo. Serum CPa9-HNE levels were 4-fold higher in CD [p <0.0001] and UC [p <0.0001] patients than in HS. CPa9-HNE correlated well with the Simple Endoscopic Score [SES]-CD score [r = 0.61, p <0.0001], MES [r = 0.46, p = 0.0141], and the full Mayo score [r = 0.52, p = 0.0013]. CPa9-HNE was able to differentiate between CD and UC patients in endoscopic remission and moderate/severe disease activity (CD: area under the curve [AUC] = 0.82 [p = 0.0003], UC: AUC = 0.87 [p = 0.0004]). The performance of CPa9-HNE was equipotent or slightly better than that of faecal CP. CONCLUSIONS: Serum CPa9-HNE levels were highly associated with CD and UC patients. CPa9-HNE correlated with the SES-CD score and the full Mayo score, indicating a strong association with disease activity.


Subject(s)
Colitis, Ulcerative , Inflammatory Bowel Diseases , Biomarkers , Colitis, Ulcerative/diagnosis , Endoscopy, Gastrointestinal , Epitopes/analysis , Feces/chemistry , Humans , Inflammatory Bowel Diseases/diagnosis , Leukocyte Elastase , Leukocyte L1 Antigen Complex/analysis , Neutrophils/chemistry , Severity of Illness Index
16.
Immunology ; 166(1): 2-16, 2022 05.
Article in English | MEDLINE | ID: mdl-35146757

ABSTRACT

Annexin-A1 has a well-defined anti-inflammatory role in the innate immune system, but its function in adaptive immunity remains controversial. This glucocorticoid-induced protein has been implicated in a range of inflammatory conditions and cancers, as well as being found to be overexpressed on the T cells of patients with autoimmune disease. Moreover, the formyl peptide family of receptors, through which annexin-A1 primarily signals, has also been implicated in these diseases. In contrast, treatment with recombinant annexin-A1 peptides resulted in suppression of inflammatory processes in murine models of inflammation. This review will focus on what is currently known about annexin-A1 in health and disease and discuss the potential of this protein as a biomarker and therapeutic target.


Subject(s)
Annexin A1 , Adaptive Immunity , Animals , Annexin A1/metabolism , Anti-Inflammatory Agents , Humans , Inflammation , Mice , Receptors, Formyl Peptide/metabolism , T-Lymphocytes/metabolism
17.
Acta Neuropathol Commun ; 10(1): 12, 2022 01 29.
Article in English | MEDLINE | ID: mdl-35093166

ABSTRACT

One of the therapeutic approaches for the treatment of the autoimmune demyelinating disease, multiple sclerosis (MS) is bone marrow mesenchymal stromal cell (hBM-MSCs) transplantation. However, given their capacity to enhance myelination in vitro, we hypothesised that human olfactory mucosa-derived MSCs (hOM-MSCs) may possess additional properties suitable for CNS repair. Herein, we have examined the efficacy of hOM-MSCs versus hBM-MSCs using the experimental autoimmune encephalomyelitis (EAE) model. Both MSC types ameliorated disease, if delivered during the initial onset of symptomatic disease. Yet, only hOM-MSCs improved disease outcome if administered during established disease when animals had severe neurological deficits. Histological analysis of spinal cord lesions revealed hOM-MSC transplantation reduced blood-brain barrier disruption and inflammatory cell recruitment and enhanced axonal survival. At early time points post-hOM-MSC treatment, animals had reduced levels of circulating IL-16, which was reflected in both the ability of immune cells to secrete IL-16 and the level of IL-16 in spinal cord inflammatory lesions. Further in vitro investigation revealed an inhibitory role for IL-16 on oligodendrocyte differentiation and myelination. Moreover, the availability of bioactive IL-16 after demyelination was reduced in the presence of hOM-MSCs. Combined, our data suggests that human hOM-MSCs may have therapeutic benefit in the treatment of MS via an IL-16-mediated pathway, especially if administered during active demyelination and inflammation.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/therapy , Interleukin-16/metabolism , Mesenchymal Stem Cell Transplantation/methods , Myelin Sheath/metabolism , Olfactory Mucosa/cytology , Animals , Encephalomyelitis, Autoimmune, Experimental/metabolism , Humans , Mice , Neurogenesis/physiology
18.
Nat Rev Dis Primers ; 7(1): 93, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34992251

ABSTRACT

Large-vessel vasculitis (LVV) manifests as inflammation of the aorta and its major branches and is the most common primary vasculitis in adults. LVV comprises two distinct conditions, giant cell arteritis and Takayasu arteritis, although the phenotypic spectrum of primary LVV is complex. Non-specific symptoms often predominate and so patients with LVV present to a range of health-care providers and settings. Rapid diagnosis, specialist referral and early treatment are key to good patient outcomes. Unfortunately, disease relapse remains common and chronic vascular complications are a source of considerable morbidity. Although accurate monitoring of disease activity is challenging, progress in vascular imaging techniques and the measurement of laboratory biomarkers may facilitate better matching of treatment intensity with disease activity. Further, advances in our understanding of disease pathophysiology have paved the way for novel biologic treatments that target important mediators of disease in both giant cell arteritis and Takayasu arteritis. This work has highlighted the substantial heterogeneity present within LVV and the importance of an individualized therapeutic approach. Future work will focus on understanding the mechanisms of persisting vascular inflammation, which will inform the development of increasingly sophisticated imaging technologies. Together, these will enable better disease prognostication, limit treatment-associated adverse effects, and facilitate targeted development and use of novel therapies.


Subject(s)
Giant Cell Arteritis , Takayasu Arteritis , Adult , Aorta , Giant Cell Arteritis/complications , Giant Cell Arteritis/diagnosis , Giant Cell Arteritis/epidemiology , Humans , Takayasu Arteritis/complications , Takayasu Arteritis/diagnosis , Takayasu Arteritis/therapy
19.
Sci Adv ; 7(50): eabl5182, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34878835

ABSTRACT

Dysregulated mitochondrial function is a hallmark of immune-mediated inflammatory diseases. Cytochrome c oxidase (CcO), which mediates the rate-limiting step in mitochondrial respiration, is remodeled during development and in response to changes of oxygen availability, but there has been little study of CcO remodeling during inflammation. Here, we describe an elegant molecular switch mediated by the bifunctional transcript C15orf48, which orchestrates the substitution of the CcO subunit NDUFA4 by its paralog C15ORF48 in primary macrophages. Expression of C15orf48 is a conserved response to inflammatory signals and occurs in many immune-related pathologies. In rheumatoid arthritis, C15orf48 mRNA is elevated in peripheral monocytes and proinflammatory synovial tissue macrophages, and its expression positively correlates with disease severity and declines in remission. C15orf48 is also expressed by pathogenic macrophages in severe coronavirus disease 2019 (COVID-19). Study of a rare metabolic disease syndrome provides evidence that loss of the NDUFA4 subunit supports proinflammatory macrophage functions.

20.
Sci Rep ; 11(1): 22741, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34815449

ABSTRACT

Models of bone remodelling could be useful in drug discovery, particularly if the model is one that replicates bone regeneration with reduction in osteoclast activity. Here we use nanovibrational stimulation to achieve this in a 3D co-culture of primary human osteoprogenitor and osteoclast progenitor cells. We show that 1000 Hz frequency, 40 nm amplitude vibration reduces osteoclast formation and activity in human mononuclear CD14+ blood cells. Additionally, this nanoscale vibration both enhances osteogenesis and reduces osteoclastogenesis in a co-culture of primary human bone marrow stromal cells and bone marrow hematopoietic cells. Further, we use metabolomics to identify Akt (protein kinase C) as a potential mediator. Akt is known to be involved in bone differentiation via transforming growth factor beta 1 (TGFß1) and bone morphogenetic protein 2 (BMP2) and it has been implicated in reduced osteoclast activity via Guanine nucleotide-binding protein subunit α13 (Gα13). With further validation, our nanovibrational bioreactor could be used to help provide humanised 3D models for drug screening.


Subject(s)
Bone Marrow Cells/cytology , Cell Differentiation , Coculture Techniques/methods , Osteoclasts/cytology , Osteogenesis , Vibration , Bone Marrow Cells/metabolism , Humans , Nanotechnology , Osteoclasts/metabolism , Osteoclasts/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...